
MATHCORE: Exercises 19/07/2018

Problem [1]. Approximation of the image: saturn.png. After starting MATLAB, type

saturn=imread(’saturn.png’);

saturn0=double(saturn)/256; saturn0=saturn0(:,:,1);

Z=saturn0;

[mz,nz] = size(Z);

imshow(Z,[0 1]);

mag = 1/3;

truesize(1, [mz*mag, nz*mag]);

Compute the SVD of this image, using the command: [U,S,V] = svd(Z);

1. Plot the singular values on a logarithmic scale.

2. Compute the optimal approximants in the 2-norm having rank r = 1, 5, and the optimal approxi-
mant having 2-norm error less than 2%, of the largest singular value of Z. What is the rank of the
approximant in the latter case? For each of the three cases compute the compression ratio.

Problem [2]. Ellipse fitting using LS and TLS.

Consider 63 points in 2-dimensional space, constructed as follows:

>> th=0:.1:2*pi;

>> a=1;b=2;

>> x=a*cos(th); y=b*sin(th);

>> figure; plot(x,y); hold;

>> xn=x+0.08*randn(1,63);

>> yn=y+0.08*randn(1,63);

>> plot(xn,yn,’r*’)

>> % Comment: you should now see an ellipse in blue and

>> % red dots defining an approximate (noisy) ellipse.

>> % The goal is to fit to the red dots an ellipse using

>> % LS and TLS and compare it with the original ellipse.

Recall that the ellipse above is defined by the equation
x2

a2
+
y2

b2
= 1. To approximate this equation in

LS we seek coefficients α and β such that the sum of the squares of the distances

δ(k, 1) = [xn(k, 1)2, yn(k, 1)2]

[
α
β

]
− 1, i = 1, 2, · · · , 63,

is minimized, i.e.
∑63
i=1 δ

2(i, 1), is minimized. For the TLS approximation we seek ᾱ, β̄, γ̄, such that
the sum of the squares of

ε(k, 1) = [xn(k, 1)2, yn(k, 1)2, 1]

 ᾱ
β̄
γ̄

 , i = 1, 2, · · · , 63,

i.e.
∑63
i=1 ε

2(i, 1), is minimized.

(a) Set up the above problem in the LS, TLS, frameworks respectively, and solve is. Then, find the error

in each case. How do the coefficients α, β and ᾱ
γ̄ , β̄

γ̄ , compare with the noiseless values of a and b?

(b) Draw the two ellipses obtained, together with the original data points.
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Problem [3]. 1. Power Method for computing the PageRank.

In this problem, we will use the Power Method for ranking MPI-related webpages.

(a) (20pts) Construct a database of webpages starting from an initial URL. For this task, we will use
the m-file surfer.m of Cleve Moler (founder of MATLAB). (This m-file can be found by searching the
MathWorks website.

Type the following statement to create your database of webpages:

[U, G] = surfer(’http://www.mpi-magdeburg.mpg.edu’, 1000);

The code starts at the specified URL (http://www.mpi-magdeburg.mpg.edu in this case), and surfs the
Web until it has visited n = 1000 pages. Be patient, as this might take a while and the code may freeze.
In this case, you will need to restart the search. Once completed, the surfer.m function will return an
n× 1 cell array U of URLs, and an n× n sparse connectivity matrix G. You can look at the entires of
U to find out which webpages were visited. The matrix G shows how the webpages are linked to each
other. Visualize the structure of this connectivity matrix by using the command spy(G).

(b) Next, we construct the transition matrix A for the Markov process, which views Web surfing as a
random process x(t+ 1) = Ax(t), t ∈ Z, where the kth entry of x ∈ Rn gives the probability that, in the
long run, a random surfer will end up at the kth Web site. Perform the following commands to create
the matrix A. Note that this code uses the probability value p = 0.85.

n = size(G,2);

p = 0.85; % The probability we used in the class

delta = (1-p)/n;

c = sum(G,1);

k = find(c~=0);

D = sparse(k,k,1./c(k),n,n);

e = ones(n,1);

z = ((1-p)*(c~=0) + (c==0))/n;

A = p*G*D + e*z; % This corresponds to p*M + (1-p)/n*e*e’ discussed in class

(c) We know that the PageRank corresponds to entries of the right eigenvector v corresponding to the
dominant eigenvalue 1 of A. Run the Power Method with the initial vector

v(0) = ones(n, 1)/n,

corresponding to initially equal probabilities. In the Power Method implementation, normalize the ap-
proximate eigenvectors by the 2-norm. In this case, since A is a stochastic matrix and v0 is a probability
vector, the approximate eigenvectors are also probability vectors, throughout the iteration; thus there
is no need to normalize them separately. For a stopping criterion, simply check the 2-norm distance
between v(k) and v(k−1), i.e, the 2-norm distance between two consecutive approximate eigenvectors.
Run the iteration until this distance is below 10−4. My implementation converged after about 30 steps.
What are the top five webpages in this PageRanking problem and what are the probabilities of being
visited?

Hint: it is recommended that you solve the above problems first for a small n (say, n = 20 ∼ 40), where
there is no need for iterative methods for computing the eigenvalue decomposition of the google matrix.

Problem [4]. (a) Given is a matrix A ∈ Rn×n, with eigenvalues λ1, · · · , λn. Choose among these a preferred
subset µ1 = λi1 , · · · , µk = λik , for appropriate indices i1, · · · , ik. Assume for simplicity that i1 =
1, · · · , ik = k, i.e. the preferred eigenvalues are the first k ones. Let

A = VΛV−1,
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be the EVD of A. We partition the eigenvectors to preferred ones (consisting of the columns of) V1,
and the rest:

V = [V1 V2], where V1 ∈ Cn×k, V2 ∈ Cn×(n−k).

Let the columns of W1 ∈ Cn×(n−k) constitute an orthonormal basis for the orthogonal complement of
V1, in other words W∗

1V1 = 0 and W∗
1W1 = In−k.

Show that the eigenvalues of W∗
1AW1 are λk+1, · · · , λn. Notice that W1 can be computed by means

of the SVD of V1. This operation is sometimes referred to as deflation of the eigenvalues of A.

(b) Use this result to compute the second largest eigenvalue of the Google matrix by means of the power
iteration method.

Problem [5]. Here we start by plotting some relevant quantities describing our system. If you are familiar
with system poles, system stability, frequency response and impulse response, you may skip this problem.

(a) Compute the system poles (eigenvalues of A) using the command eig(A) and plot them in the
complex plane. Is the system stable, i.e. are all poles in the open left-half plane? Why are the
system poles in complex conjugate pairs?

(b) Next, produce a loglog plot of the system’s frequency response, that is, plot the magnitude of the

transfer function H(ω) = C
(
ωE−A

)−1
B + D for 200 frequency points ω ∈ [10−2, 103].

Notice that for our clamped beam system E = I and D = 0. Explain why |H(ω)| → 0 as ω →∞.

(c) For the case E = I, the impulse response of a system is defined as h(t) = CeAtB + Dδ(t), t ≥ 0,
and represents the system output y(t) when the input u(t) = δ(t).

Use the command expm() to compute the matrix exponential and then plot the impulse response
for an equally spaced time grid t = linspace(0,500,500). (Hint: You only need to compute the
matrix exponential once.) Explain why the impulse response h(t)→ 0 as t→∞.

(d) Next, compute the output y(t) for a general input u(t). Recall the inpus-state-output relationship

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).

Approximating ẋ(t) with (x(t)−x(t−∆t))/∆t, where ∆t is a small, constant time step, it immedi-
ately follows that one can write the state at time t as x(t) = (E−∆tA)−1(Ex(t−∆t) + ∆tBu(t)).
We can now subsitute this expression for x(t) into the output equation to compute y(t) for general
u(t). This procedure is often refered to as Backward Euler.

Asumming x(0) = 0, plot the output y(t) for the input u = ones(1,2000), u(1:1000) = -1, and
time grid t = linspace(0,1000,2000).

Problem [6]. (Optimal H2 model reduction) Run the routine irka pseudocode with E.m to construct
matrices Wk ∈ Rn×k and Vk ∈ Rn×k, and then compute the reduced order model

Ak = W∗
kAVk, Bk = W∗

kB, Ck = CVk.

The impulse response hk(t) = Cke
AktBk of the IRKA reduced model minimizes the H2 norm of the

error system, that is: (∫ ∞
−∞

(h− hk)2(t)dt

)1/2

≤
(∫ ∞
−∞

(h− ĥk)2(t)dt

)1/2

,

for any reduced model of order k with impulse responses ĥk.

For this problem, take k = 10.

(a) Take the initial shift selection S = 1j*logspace(-2,2,k).’ and then run IRKA with the settings
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E = eye(length(B));

Tol1 = 1e-8;

Tol2 = 1e-8;

MAXITER = 100;

[Ak,Ek,Bk,Ck,Siter]=irka_pseudocode_with_E(A,E,B,C,S,Tol1,Tol2,MAXITER);

Notice that IRKA produces a reduced model in descriptor state-space form, i.e. the E matrix
may not be the identity. Compare the frequency response of the IRKA reduced model Hk(ω) =

Ck

(
ωEk−Ak

)−1
Bk+D with the frequency response of the full order system from Problem [1](b).

(b) Compare the impulse response hk(t) of the reduced model with the impulse response h(t) of the
full order system from the previous Problem.

Notice that the impulse response formula hk(t) = Cke
AktBk + Dδ(t) holds for the case when

Ek = Ik. To transform our IRKA reduced model to a system with Ek = Ik, we define

Âk = E−1
k Ak, B̂k = E−1

k Bk,

and then the impulse response of the reduced model is given by hk(t) = Cke
ÂktB̂k + Dδ(t).

(c) Repeat (a) and (b) for k = 10, but with random initial shift selection S = 1j*randn(k,1).

Does IRKA converge? If so, in how many iterations? Plot the frequency and impulse responses of
the reduced model (even if IRKA didn’t fully converge)? What do you notice?

Problem [7]. (Reduced models from measurements (Loewner method)

Download the file freq data.mat and use the load command to load its contents into Matlab.

The vector w ∈ CN contains N = 100 points on the ω axis, w(i) ∈  [0,∞), and the entries of H ∈ CN
are frequency response measurements computed as

H(i) = C
(
w(i)E−A

)−1
B

for an unknown system E,A ∈ Rn×n,B ∈ Rn×1,C ∈ R1×n, of unknown order n.

Our goal is to find a reduced model of order k, given by Ek,Ak ∈ Rk×k,Bk ∈ Rk×1,Ck ∈ R1×k, that
interpolates the given measurements

Hk

(
w(i)

)
= H(i)

with Hk(s) = Ck

(
sEk −Ak

)−1
Bk.

To identify the low order k and construct matrices Ek,Ak,Bk,Ck, we use the Loewner matrix framework.

(a) Partition the given measurements into any two disjoint sets{
(wi, Hi)

}
=
{

(λj ,Wj)
}
∪
{

(µk, Vk)
}
,

for j = 1, . . . ,M and k = 1, . . . , N −M . For simplicity, take M = N/2, and define the partitioning

la = w(1:2:N); W = H(1:2:N);

mu = w(2:2:N); V = H(2:2:N);

Next, to ensure that our reduced models are real, i.e. matrices Ek,Ak,Bk,Ck have real entries, we
also need to use the complex conjugate values of the measurements. Thus, define vectors

λ← [λ1, λ1, λ2, λ2, · · · ], W ← [W1,W 1,W2,W 2, · · · ],

µ← [µ1, µ1, µ2, µ2, · · · ], V ← [V1, V 1, V2, V 2, · · · ].

From these measurements, form the Loewner matrix L and shifted-Loewner matrix Ls defined as

L(i, j) =
Vi −Wj

µi − λj
, Ls(i, j) =

µiVi − λjWj

µi − λj
.
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Notice that the Loewner matrices still have complex entries. To obtain matrices with real entries,
apply the following transformation

L← P∗LP, Ls ← P∗LsP,

W ← (WTP)T , V ← P∗V,

where P is a block-diagonal matrix, with each diagonal block given by the matrix 1√
2

[
1 
1 −

]
.

Then, the order k of the reduced order interpolant Hk is given by the rank of L.

Plot the singular values of L and identify k as the numerical rank of L.

(b) Let L = YSX∗ be the singular value decomposition (SVD) of the Loewner matrix L. Define

Yk = Y(:,1:k);

Xk = X(:,1:k);

Then the reduced order model Hk is given by

Ek = −Y ∗k LXk, Ak = −Y ∗k LsXk, Bk = Y ∗k V, Ck = WTXk.

Produce a plot superimposing the given measurements (wi, Hi) over the values obtained by eval-
uating the reduced order model at the same points wi, i.e. Hk

(
w(i)

)
. Does your reduced order

model of order k interpolate the given measurements?

Remark: Notice that the given points wi are all on the ω axis. Therefore, we can easily produce
frequency response plots with the command loglog(imag(w),abs(H)), where the 0x axis represents
radians/second. If we normalize w by 2π, then this axis will be given in Hertz.

(c) As some of you may have already noticed, the file freq data.mat contains frequency response
measurements of the clamped beam system discussed in previous problems.

Load the original system A,B,C of order n = 348 stored in beam.mat. Superimpose its frequency
response over the plot from point (b) for a fairly dense frequency grid, e.g. logspace(-2,3,300).

How well does your reduced model from (b) approximate the original system?

(d) Next, on the same plot, show the poles of the original system, i.e. the eigenvalues of A, together
with the poles of the reduced model you constructed in (b). The poles of your reduced model are
the generalized eigenvalues of the matrix pencil (Ak,Ek). How do the poles of the reduced model
compare with those of the original system? Is your reduced order model stable?

(e) Repeat the experiments in points (b), (c) and (d) for smaller reduced orders, e.g. k = 10. Are the
given measurements (wi, Hi) interpolated by your reduced order models? How well is the frequency
response of the original system A,B,C approximated?

(f) On the same plot, show the impulse response of the full order system, the reduced model from point
(b) (k = rank L) and the reduced model from point (e) (k = 10).

Further details on the Loewner matrix framework for rational interpolation:

• Rational interpolation and system identification in the Loewner matrix framework:

A.J. Mayo and A.C. Antoulas, A framework for the generalized realization problem, Linear Algebra
and Its Applications, vol. 425: 634-662 (2007).

• The general case of multi-input multi-output (MIMO) system measurements, e.g. S-parameters:

S. Lefteriu and A.C. Antoulas, A new approach to modeling multi-port systems from frequency
domain data, IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,
vol. 29, no. 1, pp. 14-27, Jan. 2010.
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Problem [8]. (Balanced truncation) Next, we compute reduced order models using balanced truncation.

(a) Load the system matrices A,B,C stored in beam.mat. In Matlab, use lyapchol to compute the
Cholesky factors for the controllability gramian P and observability gramian Q, i.e. P = UU∗ and
Q = LL∗, where U is upper triangular and L is lower triangular. Recall that the gramians are the
solutions of the following Lyapunov equations

AP + PA∗ + BB∗ = 0 and ATQ + QA + CTC = 0.

(b) Compute the singular value decomposition

U∗L = YΣX∗

Then the Hankel singular values of the system (square roots of the eigenvalues of the product PQ)
are given by the diagonal entries σi of Σ. Produce a semilogy plot showing the eigenvalues of P
and Q together with the Hankel singular values σi.

(c) Let the order of the desired reduced model be k and partition the singular value decomposition as

YΣX∗ =
[
YkŶk

] [ Σk
Σ̂k

] [
X∗k
X̂∗k

]
where Σk ∈ Rk×k. Then the balanced truncation reduced order model is given by

Ak = W∗
kAVk, Bk = W∗

kB, Ck = W∗
kC,

where Wk = LXkΣ
−1/2
k and Vk = UYkΣ

−1/2
k .

For several values of k, produce frequency response plots comparing the original system with the
reduced order models. Also, produce a plot showing the spectral abscissa of Ak as a function of k.

(d) For a fixed k, e.g. k = 20, produce a plot of the error between the original system and the balanced
truncation reduced model, i.e. plot |H(ω)−Hk(ω)|. On the same plot, superimpose the balanced
truncation upper error bound, i.e. 2(σk+1 + · · ·+ σn).

Problem [9]. Data-Driven Optimal Model Reduction: Parts (a) and (b) of this problem are from
Approximation of Large-scale Dynamical Systems, A.C. Antoulas, SIAM Press, 2009.
Consider the diffusion of heat through a perfectly insulated, heat-conducting rod described by

∂T

∂t
(x, t) =

∂2T

∂x2
(x, t), t ≥ 0, x ∈ [0, 1]

with the boundary conditions

∂T

∂t
(0, t) = 0 and

∂T

∂x
(1, t) = u(t)

where u(t) is the input function (supplied heat) and the output is y(t) = T (0, t)

(a) Show that the transfer function is given by

H(s) =
Y (s)

U(s)
=

1√
s sinh

√
s

(b) Show that the poles are λk = −k2π2, k = 0, 1, 2, . . . and

H(s) =

∞∑
k=0

φk
s+ k2π2

, φ0 = 1, φk = (−1)k 2, k > 0

(c) Construct a locally optimal H2 approximation using IRKA. We will do this without discretization
by applying realization-independent IRKA using the Loewner framework for IRKA. Note that H(s)
has a pole at s = 0. Remove this pole and apply Loewner-based IRKA to obtain a second-order
rational approximation. Then, add back the pole at zero to your rational approximation to get
your final approximation. Note that this rational approximation is an exact Hermite interpolant to
H(s). Verify this numerically. Find the H∞ error.
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Problem [10]. RLC circuit - MIMO - Band-stop filter1: This problem described in Data-driven and
interpolatory model reduction, S. Gugercin, C. A. Beattie, and A. C. Antoulas, SIAM Philadelphia, 2016.
This system has 2 ports (i.e. two inputs and two outputs) state-space dimension 10, and a D term of
size 2× 2. The Linear Time Invariant (LTI) system in the matrix form is:

Σ : Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t).

Σ : (E,A,B,C,D), E,A ∈ R10×10,B ∈ R10×2,C ∈ R2×10,D ∈ R2×2

(a) In this case where the matrix pencil (A,E) is regular, show that the transfer function is defined as:

H(s) = C(sE−A)−1B + D ∈ R2×2.

(b) Show that we can eliminate the D term by incorporating it in the remaining matrices (E,A,B,C).
To achieve this, we have to allow the dimension of the realization to increase by rank(D). Use
the remark 1.1.1 on page 6 from: A tutorial introduction to the Loewner Framework for Model
Reduction, A.C. Antoulas, S. Lefteriu, and A.C. Ionita. and show that the descriptor system

Σδ : (Eδ,Aδ,Bδ,Cδ,0)

has the same transfer function as the initial system Σ.

(c) Download the file bandstop.mat and use the load command to load its contents into Matlab.

(i) Take only the first input with the second output (SISO) with D=0 and sample the transfer
function in N = 100 points inside the frequency interval [0.1, 10]Hz.

(ii) Separate your measurements in left interpolation points: {µi}ni=1 ⊂ C with the corresponding
left responses {νi}ni=1 ∈ C and in right interpolation points: {λi}ni=1 ⊂ C with responses
{wi}ni=1 ∈ C. (In the case of SISO the direction matrices are considered as 1).

(iii) Form the Loewner matrices as:

L(ij) =
νi − wj
µi − λj

, Ls(ij) =
µiνi − wjλj
µi − λj

, i, j = 1, ..., n.

(iv) Transform all the complex quantities to real under the assumption of H̄(s) = H(s̄).

(v) Compute the singular value decomposition (SVD) of the augmented matrices [L Ls] and
[L;Ls]. Decide the order of the reduced model and get the projectors X,Y ∈ Rn×r.

(vi) Construct the projected model as:

{Ê = −Y∗LX, Â = −Y∗LsX, B̂ = Y∗V, Ĉ = WX}

(vii) Evaluate the approximant of order r inside the interval [0.1, 10]Hz with 1000 points. Superim-
pose the two transfer functions.

(g) What is the order r which we are able to recover the initial system?

(i) With D = 0

(ii) With D 6= 0

(h) Find the controllability and observability Gramian of the initial system and hence show that the
system is balanced. What are the Hankel singular values σk, k = 1, ..., 10?

(i) Show that the 2-port system is all-pass if the feedthrough matrix is chosen as: D̂ =

[
0 − 1

2
1
2 0

]
.

(j) Hence conclude that this system cannot be approximated using balanced truncation.

1A band-stop filter is a dynamical system that blocks signals with frequency in a given interval while it lets through,
almost unchanged, signals with frequency outside the given interval.
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• Closing remarks. System matrices of a discretized beam can be downloaded the beam.mat file from

http://www.slicot.org/shared/bench-data/beam.zip ,

which contains system matrices A,B,C for a single-input, single-output (SISO) system with n = 348
states describing a clamped beam. Notice that A is stored in sparse format; however, because it has
modest dimensions, we can convert it to dense format in Matlab using the command A = full(A).
Alternatively, you can use another system from your own research, or one of the benchmarks available
at http://www.icm.tu-bs.de/NICONET/benchmodred.html . • Reference. For more details on model

order reduction, we direct the reader to
A.C. Antoulas, Approximation of large-scale dynamical systems, SIAM, Philadelphia, 2005.
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