
Otto-von-Guericke Universität Magdeburg 16.07.2018
Institut für Analysis und Numerik
Prof. Dr. Thomas Richter
carolin.mehlmann@ovgu.de

thomas.richter@ovgu.de

MathCore: Discretization & Solution

Today, we

• implement a simple finite element discretization for the Laplace Equation

• we approximate the problem

−∆u = f in Ω, u = 0 on ∂Ω

• we consider a 2d- and a 3d-domain

Ω = (0, 1)2, Ω = (0, 1)3.

• Slides: https://www.math.uni-magdeburg.de/~richter/mathcore/finiteelements.pdf

Matlab-Template

• Download and unzip https://www.math.uni-magdeburg.de/~richter/mathcore/template1.zip

• Open Matlab and look at the files. A lot is already prepared

createmesh.m This function gets two arguments, DIM for the spatial dimension and M, where

M−1 is the number of inner mesh points in every direction. The mesh has a total number

of N = (M − 1)DIM inner points (xi, yj) (or (xi, yj , zk) in 3d). The indices i and j run

from 1 to M − 1. The mesh size is h = 1/M so that xi = ih. The mesh is stored as a

N × DIM matrix so that mesh(:,1) is the vector of x-coordinates. The sorting of the

unknowns is lexicographic, x being the innermost index, then y, then z (in 3d) as outer

index. Use the function, e.g. createmesh(2,3), and have a look at the output.

setrhs.m This function takes the mesh and returns the right hand side vector b. Right hand

side functions f are integrated with the trapecoidal rule, such that (in 2d and 3d)

bij = h2f(xi, yj), bijk = h3f(xi, yj , zk).

At the moment the right hand side is given as f(x, y) = 2π2 sin(πx) sin(πy) (likewise in

3d). This is the right hand side to the solution u(x, y) = sin(πx) sin(πy), i.e. f = −∆u.

plotsolution.m This functions gets a name for the plot, the mesh and a data vector to plot.

• Furthermore you have some empty templates to be finished by you.

1. In assemblematrix.m implement the finite element matrix for the Laplace problem for the dis-

cretization with piecewise linear functions on a uniform triangular mesh. This is the 5-point stencil

carolin.mehlmann@ovgu.de
thomas.richter@ovgu.de


in 2d and 7-point stencil in 3d

S2d
h =


−1

−1 4 −1

−1

 , S3d
h =

−1

h


−1 . .

.

−1 6 −1

. .
.
−1


−1

Use sparse-matrices and try to avoid loops. (Hint: look at the matlab functions eye and

kronecker)

With full(A) you can print a sparse matrix and with spy(A) you can visualize the sparsity

pattern of the matrix.

2. Finish the function start.m. It gets two parameters, DIM and M. It should:

1. Set up the mesh

2. Set up the matrix A

3. Set up the right hand side b

4. Solve the problem with x = A\b

5. Plot the solution

Start the program in 2d and 3d with different values of M.

3. We want to compute the finite element error

‖u− uh‖∞

Look at exactsolution.m and setrhs.m. The function computeerror.m (everything is already

done) computes the error between a finite element solution and the exact solution and prints out

the maximum norm.

a) Modify start.m: after solving the problem in start.m add a call to computeerror.m to com-

pute the error (in between steps 4 and 5)

b) Run the problem and try to reduce the error as much as possible. Does the error go to zero

with h→ 0? If not, right hand side, matrix or exact solution are wrong.

c) Check that you get the theoretical order of convergence

‖u− uh‖∞ = O(h2)

(Note: h = 1/M and thus ‖u− uh‖∞ = O(1/M2))

4. We want to solve the Laplace problem −∆u = f such that the solution is given by

u(x, y) = sin(πx) sin(πy) exp(5x), u(x, y, z) = sin(πx) sin(πy) sin(πz) exp(5x).

a) Compute the corresponding right hand side via

f = −∆u.



b) Implement the right hand f side in setrhs.m and implement the exact solution u in exactsolution.m

c) Run the problem and try to reduce the error as much as possible. Does the error go to zero

with h→ 0? If not, right hand side, matrix or exact solution are wrong.

Try to reach and error of 10−3 in 2d and 3d.


