SDP for Algebra, Combinatorics \& Geometry

MathCoRe
Lorenzo Baldi
Sebastian Debus
2. Day
20.06.2023

Exercise 1

Prove the following facts about the convex cone of Sums of Squares Σ^{2}.
0 . If $\sigma \in \Sigma^{2} \subset \mathbb{R}[\mathbf{x}]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, then $\sigma(\mathbf{x}) \geq 0 \forall \mathbf{x} \in \mathbb{R}^{n}$.

1. If $\sigma=h_{1}^{2}+\cdots+h_{r}^{2} \in \Sigma^{2}$ with $\max _{i \in\{1, \ldots r\}} \operatorname{deg}\left(h_{i}\right)=d$, then $\operatorname{deg}(\sigma)=2 d$.
2. Σ^{2} is a pointed convex cone, i.e. $\Sigma \cap-\Sigma=\{0\}$.
3. $\Sigma^{2}-\Sigma^{2}:=\left\{\sigma_{1}-\sigma_{2} \mid \sigma_{1}, \sigma_{2} \in \Sigma^{2}\right\}=\mathbb{R}[\mathbf{x}]$.

Exercise 2

Show that every univariate non-negative polynomial can be written as a sum of two squares.

Hint: use the Fundamental Theorem of Algebra.

Exercise 3

Show that the Motzkin polynomial $M(x, y)=1-3 x^{2} y^{2}+x^{2} y^{4}+x^{4} y^{2}$ is non-negative on \mathbb{R}^{2} using the Arithmetic Mean-Geometric Mean inequality.

Exercise 4

Let $M(\mathbf{g})$ be the quadratic module generated by the tuple of polynomials $\left(g_{1}, \ldots g_{m}\right)$. Prove that the following are equivalent.
(i) $\exists h \in M(\mathbf{g}): S(h)=\{\mathbf{x} \mid h(\mathbf{x}) \geq 0\}$ is compact.
(ii) $\exists r \in \mathbb{N}: r-\sum_{i=1}^{n} x_{i}^{2}=r-\|\mathbf{x}\|_{2}^{2} \in M(\mathbf{g})$.
(iii) $\forall f \in \mathbb{R}[\mathbf{x}], \exists r \in \mathbb{N}: r \pm f \in M(\mathbf{g})$.

These are the equvalent definitions of Archimedean quadratic module.
Hint: Show directly that $(i i i) \Rightarrow(i i) \Rightarrow(i)$. For $(i) \Rightarrow(i i i)$ use Schmüdgen's Positivstellensatz.

Exercise 5 (Jabobi-Prestel Example)

Let $g_{1}=x_{1}-1 / 2, g_{2}=x_{2}-1 / 2, g_{3}=1-x_{1} x_{2}$. Show that $S(\mathbf{g}) \subset \mathbb{R}^{2}$ is compact but $M(\mathbf{g})$ is not Archimedean (notice that $T(\mathbf{g})$ is Archimedean from Schmüdgen's Positvstellensatz).

Hints. Assume that $r-x_{1}=\sigma_{0}+\sigma_{1} g_{1}+\sigma_{2} g_{2}+\sigma_{3} g_{3} \in M\left(g_{1}, g_{2}, g_{3}\right)$ for some $r \in \mathbb{N}$. Consider the terms of homogeneous maximal degree: $\sigma_{0}^{H}, \sigma_{1}^{H} x_{1}, \sigma_{2}^{H} x_{2},-\sigma_{3}^{H} x_{1} x_{2}$. Among them, pick the ones of highest degree. Then prove the following.

- If the terms with maximal degree are σ_{0}^{H} (or $-\sigma_{3}^{H} x_{1} x_{2}$), then $\sigma_{0}^{H}-\sigma_{3}^{H} x_{1} x_{2}=0$ (since $r-x_{1}$ has odd degree). Prove that this implies $\sigma_{0}^{H}=\sigma_{3}^{H}=0$, contradicting the hypothesis of maximal degree.
- Otherwise, in a similar way show that $\sigma_{1}^{H} x_{1}$ and $\sigma_{2}^{H} x_{2}$ cannot cancel (i.e. $\sigma_{1}^{H} x_{1} \neq$ $\sigma_{2}^{H} x_{2}$). Therefore $\sigma_{1}^{H} x_{1}+\sigma_{2}^{H} x_{2}=-x_{1}$. One can show that such a representation is not possible.

We conclude that $r-x_{1} \notin M(\mathbf{g})$, proving that $M(\mathbf{g})$ is not Archimedean.

Exercise 6

Given an ideal $I \subset \mathbb{R}[\mathbf{x}]$, show that $\left(I+\Sigma^{2}\right) \cap-\left(I+\Sigma^{2}\right)$ is an ideal of $\mathbb{R}[\mathbf{x}]$ and that:

$$
\left\{f \in \mathbb{R}[\mathbf{x}] \mid \exists k \in \mathbb{N}, \sigma \in \Sigma^{2} \text { s.t. } f^{2 k}+\sigma \in I\right\}=\sqrt{\left(I+\Sigma^{2}\right) \cap-\left(I+\Sigma^{2}\right)}
$$

These are two equivalent definitions for the real radical of I, denoted $\sqrt[\mathbb{R}]{I}$.

