3. Day

21.06.2023

Graph parameters

Exercise 1

Let $G=(V, E)$ be a graph. The theta number of G is defined as

$$
\chi(G)=\max _{X \in \mathcal{S}^{n}}\left\{\langle J, X\rangle: \operatorname{Tr}(X)=1, X_{i j}=0 \forall\{i, j\} \in E, X \succeq 0\right\}
$$

Formulate the dual SDP and show that $\chi(G)$ can be expressed by any of the following programs

1. $\chi(G)=\min _{t \in \mathbb{R}, A \in \mathcal{S}^{n}}\left\{t: t I+A-J \succeq 0, A_{i j}=0(i=j\right.$ or $\left.\{i, j\} \in \bar{E})\right\}$
2. $\chi(G)=\min _{t \in \mathbb{R}, B \in \mathcal{S}^{n}}\left\{t: t I-B \succeq 0, B_{i j}=1(i=j\right.$ or $\left.\{i, j\} \in \bar{E})\right\}$
3. $\chi(G)=\min _{t \in \mathbb{R}, C \in \mathcal{S}^{n}}\left\{t: C-J \succeq 0, C_{i i}=1(i \in V), C_{i j}=0(\{i, j\} \in \bar{E})\right\}$
4. $\chi(G)=\min _{B \in \mathcal{S}^{n}}\left\{\lambda_{\max }(B): B_{i j}=1(i=j\right.$ or $\left.\{i, j\} \in \bar{E})\right\}$

Fact: Strong duality applies and the supremum of the primal program and the infimum of the dual program are attained.

Exercise 2

1. Show that the inequality $\omega(G) \leq \chi(G)$ between the clique and the chromatic number of a graph can be strict.
2. Show that all bipartite graphs are perfect.
3. Show that any graph G can be embedded in a graph \hat{G} with $\omega(\hat{G})=\chi(\hat{G})$. Is \hat{G} necessarily perfect?

Exercise 3

Proof the inequality

$$
\alpha(G) \leq \alpha^{*}(G) \leq \chi(\bar{G})
$$

and find an example of a graph where all inequalities are strict.
Hint: Consider circles of length n. Is there a difference between n even or odd?

Quadratic modules and preorderings (if you want, you can skip to the next section about Polynomial Optimization)

Exercise 5

Prove that the quadratic module generated by \mathbf{g}, i.e. $M(\mathbf{g})=\Sigma^{2}+\Sigma^{2} \cdot g_{1}+\cdots+\Sigma^{2} \cdot g_{m}$, is the smallest quadratic module containing $g_{1}, \ldots g_{m}$. Moreover, show that $M(\mathbf{g}) \subsetneq \mathbb{R}[\mathbf{x}]$ if and only if $-1 \notin M(\mathbf{g})$.

Exercise 6

Show that, if $f \in \mathbb{R}[\mathbf{x}]$, then $M(f,-f)=I_{\mathbb{R}}(f)+\Sigma^{2}$.

Exercise 7

We consider the univariate case.

1. Show that $M(1-x, 1+x)=T\left(1-x^{2}\right)$. There is a deep reason for this equality: if $S(\mathbf{g}) \subset \mathbb{R}$ is compact, then $M(\mathbf{g})=T(\mathbf{g})$. This is an highly non-trivial result in full generality.
2. Prove that $(1-x)^{3} \notin M\left((1-x)^{3}, 1+x\right)$. Hint: you can first show that $x \notin M\left(x^{3}\right)$, and then adapt the proof.
3. Prove that $x \notin M\left(-x^{2}\right)$, but then show that, for all $\varepsilon>0, x+\varepsilon=\sigma_{0, \varepsilon}-$ $\sigma_{1, \varepsilon} x^{2} \in M\left(-x^{2}\right)$ with $\operatorname{deg} \sigma_{0, \varepsilon}=2, \operatorname{deg} \sigma_{1, \varepsilon}=1$. Hint: use some of the previously derived equations, and then substitute $x \rightarrow x / \varepsilon$. What happens to the norm of the coefficients when $\varepsilon \rightarrow 0$?

Exercise 8

Prove that $x_{1} x_{2} \notin M\left(x_{1}, x_{2}, 1-x_{1}^{2}-x_{2}^{2}\right)$.

Exercise 8

Let $\left(a_{1}, \ldots a_{n}\right) \in \mathbb{R}^{n}$ and consider the ideal $I=I_{\mathbb{R}}\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$. Show that $I \subset \mathbb{R}[\mathbf{x}]$ is a maximal proper ideal (i.e. show that, if $f \in \mathbb{R}[\mathbf{x}] \backslash I$, then any ideal containing I and f is equal to $\mathbb{R}[\mathbf{x}]$).

Hint: equivalently, you can prove that the quotient ring $\mathbb{R}[\mathbf{x}] / I$ is isomorphic to \mathbb{R}. Notice also that the statement is true if we replace \mathbb{R} by an arbitrary field.

Polynomial Optimization

Exercise 9

Show that, for $D \subset \mathbb{R}^{n}$:

$$
f^{*}:=\inf \{f(\mathbf{x}) \mid \mathbf{x} \in D\}=\sup \{\lambda \in \mathbb{R} \mid f(\mathbf{x})-\lambda \geq 0 \forall \mathbf{x} \in D\}
$$

(we are not assuming compactness of D)

Exercise 10

Find an example of quadratic module where $M(\mathbf{g})_{r} \subsetneq M(\mathbf{g}) \cap \mathbb{R}[\mathbf{x}]_{\leq r}$ for some r. Hint: consider the univariate polynomial $1-x^{2}$. Show that

$$
1-x^{2} \in\left(M(1-x, 1+x) \cap \mathbb{R}[\mathbf{x}]_{\leq 2}\right) \backslash M(1-x, 1+x)_{2}
$$

Exercise 11

Show the following basic properties of the SoS hierarchy $\left\{f_{\mathrm{SoS}, r}^{*}\right\}_{r \in \mathbb{N}}$:

- $\forall r \in \mathbb{N}, f_{\mathrm{SoS}, r}^{*} \leq f^{*}$
- $\forall r \in \mathbb{N}, f_{\mathrm{SoS}, r}^{*} \leq f_{\mathrm{SoS}, r+1}^{*}$

