SDP for Algebra, Combinatorics & Geometry

MathCoRe Lorenzo Baldi Sebastian Debus

21.06.2023

3. Day

Graph parameters

Exercise 1

Let G = (V, E) be a graph. The theta number of G is defined as

$$\chi(G) = \max_{X \in \mathcal{S}^n} \{ \langle J, X \rangle : \operatorname{Tr}(X) = 1, X_{ij} = 0 \ \forall \{i, j\} \in E, X \succeq 0 \}$$

Formulate the dual SDP and show that $\chi(G)$ can be expressed by any of the following programs

- 1. $\chi(G) = \min_{t \in \mathbb{R}, A \in \mathcal{S}^n} \{ t : tI + A J \succeq 0, A_{ij} = 0 \ (i = j \text{ or } \{i, j\} \in \overline{E}) \}$
- 2. $\chi(G) = \min_{t \in \mathbb{R}, B \in \mathcal{S}^n} \{ t : tI B \succeq 0, B_{ij} = 1 \ (i = j \text{ or } \{i, j\} \in \overline{E}) \}$
- 3. $\chi(G) = \min_{t \in \mathbb{R}, C \in S^n} \{ t : C J \succeq 0, C_{ii} = 1 \ (i \in V), C_{ij} = 0 \ (\{i, j\} \in \overline{E}) \}$
- 4. $\chi(G) = \min_{B \in \mathcal{S}^n} \{\lambda_{\max}(B) : B_{ij} = 1 \ (i = j \text{ or } \{i, j\} \in \overline{E})\}$

Fact: Strong duality applies and the supremum of the primal program and the infimum of the dual program are attained.

Exercise 2

- 1. Show that the inequality $\omega(G) \leq \chi(G)$ between the clique and the chromatic number of a graph can be strict.
- 2. Show that all bipartite graphs are perfect.
- 3. Show that any graph G can be embedded in a graph \hat{G} with $\omega(\hat{G}) = \chi(\hat{G})$. Is \hat{G} necessarily perfect?

Exercise 3

Proof the inequality

$$\alpha(G) \le \alpha^*(G) \le \chi(\overline{G})$$

and find an example of a graph where all inequalities are strict.

Hint: Consider circles of length n. Is there a difference between n even or odd?

Quadratic modules and preorderings (if you want, you can skip to the next section about Polynomial Optimization)

Exercise 5

Prove that the quadratic module generated by \mathbf{g} , i.e. $M(\mathbf{g}) = \Sigma^2 + \Sigma^2 \cdot g_1 + \cdots + \Sigma^2 \cdot g_m$, is the smallest quadratic module containing g_1, \ldots, g_m . Moreover, show that $M(\mathbf{g}) \subsetneq \mathbb{R}[\mathbf{x}]$ if and only if $-1 \notin M(\mathbf{g})$.

Exercise 6

Show that, if $f \in \mathbb{R}[\mathbf{x}]$, then $M(f, -f) = I_{\mathbb{R}}(f) + \Sigma^2$.

Exercise 7

We consider the univariate case.

- 1. Show that $M(1 x, 1 + x) = T(1 x^2)$. There is a deep reason for this equality: if $S(\mathbf{g}) \subset \mathbb{R}$ is compact, then $M(\mathbf{g}) = T(\mathbf{g})$. This is an highly non-trivial result in full generality.
- 2. Prove that $(1-x)^3 \notin M((1-x)^3, 1+x)$. Hint: you can first show that $x \notin M(x^3)$, and then adapt the proof.

3. Prove that $x \notin M(-x^2)$, but then show that, for all $\varepsilon > 0$, $x + \varepsilon = \sigma_{0,\varepsilon} - \sigma_{1,\varepsilon}x^2 \in M(-x^2)$ with deg $\sigma_{0,\varepsilon} = 2$, deg $\sigma_{1,\varepsilon} = 1$. Hint: use some of the previously derived equations, and then substitute $x \to x/\varepsilon$. What happens to the norm of the coefficients when $\varepsilon \to 0$?

Exercise 8

Prove that $x_1x_2 \notin M(x_1, x_2, 1 - x_1^2 - x_2^2)$.

Exercise 8

Let $(a_1, \ldots a_n) \in \mathbb{R}^n$ and consider the ideal $I = I_{\mathbb{R}}(x_1 - a_1, \ldots, x_n - a_n)$. Show that $I \subset \mathbb{R}[\mathbf{x}]$ is a maximal proper ideal (i.e. show that, if $f \in \mathbb{R}[\mathbf{x}] \setminus I$, then any ideal containing I and f is equal to $\mathbb{R}[\mathbf{x}]$).

Hint: equivalently, you can prove that the quotient ring $\mathbb{R}[\mathbf{x}]/I$ is isomorphic to \mathbb{R} . Notice also that the statement is true if we replace \mathbb{R} by an arbitrary field.

Polynomial Optimization

Exercise 9

Show that, for $D \subset \mathbb{R}^n$:

$$f^* := \inf\{ f(\mathbf{x}) \mid \mathbf{x} \in D \} = \sup\{ \lambda \in \mathbb{R} \mid f(\mathbf{x}) - \lambda \ge 0 \ \forall \mathbf{x} \in D \}$$

(we are not assuming compactness of D)

Exercise 10

Find an example of quadratic module where $M(\mathbf{g})_r \subsetneq M(\mathbf{g}) \cap \mathbb{R}[\mathbf{x}]_{\leq r}$ for some r. Hint: consider the univariate polynomial $1 - x^2$. Show that

$$1 - x^2 \in (M(1 - x, 1 + x) \cap \mathbb{R}[\mathbf{x}]_{\leq 2}) \setminus M(1 - x, 1 + x)_2$$

Exercise 11

Show the following basic properties of the SoS hierarchy $\{\,f^*_{{\rm SoS},r}\,\}_{r\in\mathbb{N}}\colon$

- $\forall r \in \mathbb{N}, f^*_{\mathrm{SoS},r} \leq f^*$
- $\forall r \in \mathbb{N}, f^*_{\mathrm{SoS},r} \leq f^*_{\mathrm{SoS},r+1}$