MathCoRe
Lorenzo Baldi
Sebastian Debus

4. Day

22.06.2023

Geometry (Spherical packings)

Exercise 1

We want to show that the infinitely many linear inequalities in Delsarte's linear program can be phrased as finitely many positive semidefinite conditions. Therefore a truncated Delsarte's linear program is a semidefinite program.
Use Fekete's theorem: Let $f \in \mathbb{R}[t]$ be a univariate polynomial. Then $f \geq 0$ on $[-1,1]$ iff $f=\sigma_{1}+\left(1-x^{2}\right) \sigma_{2}$ for some sums of squares $\sigma_{1}, \sigma_{2} \in \mathbb{R}[t]$, to prove an equivalent condition for $f \geq 0$ on $[a, b]$ using sums of squares polynomials.

Exercise 2

Can you say something about the relation of n, i.e. the number of points, k, i.e the dimension of the vector space \mathbb{R}^{k}, and $\operatorname{rk}(X)$ for a feasible solution X in the SDP relaxation for the problem of reconstructing locations.

Exercise 3

Recall that the Chebyshev polynomials $\left(P_{k}^{(2)} \in \mathbb{R}[t]\right)_{k \in \mathbb{N}}$ are the unique univariate polynomials such that $\operatorname{deg} P_{k}^{(2)}=k$ and

$$
\int_{-1}^{1} \frac{P_{k}^{(2)} P_{l}^{(2)}}{\sqrt{1-t^{2}}} \mathrm{~d} t=0, \forall k \neq l, \quad P_{k}^{(2)}(1)=1
$$

Show that the Chebyshev polynomials $P_{k}^{(2)} \in \mathbb{R}[t]$ define the following recursion:

$$
P_{0}^{(2)}=1, P_{1}^{(2)}=t, P_{k+1}^{(2)}=2 t P_{k}^{(2)}-P_{k-1}^{(2)}
$$

Polynomial Optimization: moment relaxations

Exercise 4

1. Show that, given $L \in \mathbb{R}[\mathbf{x}]^{\vee}$ (i.e. $L: \mathbb{R}[\mathbf{x}] \rightarrow \mathbb{R}$ linear), $y_{\alpha}=L\left(\mathbf{x}^{\alpha}\right)$ and $g \in \mathbb{R}[\mathbf{x}]$, then $L\left(g f^{2}\right) \geq 0$ for all $f \in \mathbb{R}[\mathbf{x}]$ if and only if $\mathbf{M}(g \cdot \mathbf{y}) \succcurlyeq 0$ Hint: adapt the proof from the case of the moment matrices $\mathbf{M}(\mathbf{y})$
2. Adapt the statement for truncated linear functionals, i.e. $L: \mathbb{R}[\mathbf{x}]_{2 r} \rightarrow \mathbb{R}$, and conclude that the $\mathbf{M}_{r}(\mathbf{y}) \succcurlyeq 0, \mathbf{M}_{k_{1}}\left(g_{1} \cdot \mathbf{y}\right) \succcurlyeq 0, \ldots \mathbf{M}\left(g_{m} \cdot \mathbf{y}\right) \succcurlyeq 0$ if and only if $L(q) \geq 0$ for all $q \in M(\mathbf{g})_{2 r}$. Hint: write $q=\sigma_{0}+\sigma_{1} g_{1}+\cdots+g_{m} \sigma_{m}$ and $\sigma_{i}=\sum_{j} f_{i, j}^{2}, \ldots$

Exercise 5

- Prove that, if \mathbf{x}^{*} is a minimizer of f on $S(\mathbf{g})$, then $\int f \mathrm{~d} \delta_{\mathbf{x}^{*}}=f^{*}$.
- Show that $f^{*}=\inf \left\{\int f \mathrm{~d} \mu \mid \mu \in \mathcal{M}(S(\mathbf{g})), \int 1 \mathrm{~d} \mu=1\right\}$.
- Conclude that $f_{\text {mom }, r}^{*} \leq f^{*}$ for all $r \in \mathbb{N}$.

