5. Day

23.06.2023

Symmetric polynomials

Exercise 1

Let $f_{1}, \ldots, f_{m} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be symmetric real polynomials of degrees d_{1}, \ldots, d_{m}. Show that the real variety $V\left(f_{1}, \ldots, f_{m}\right)=\left\{z \in \mathbb{R}^{n}: f_{1}(z)=\ldots=f_{m}(z)=0\right\}$ is nonempty if and only if it contains a point $z \in \mathbb{R}^{n}$ with at most $\max \left\{2, d_{1}, \ldots, d_{m}\right\}$ distinct coordinates.

Hint: Can $f_{1}=0, \ldots, f_{m}=0$ be defined by only one polynomial equations with higher degree? Note that this is different over \mathbb{C}.

Exercise 2

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right) \vdash n$ be a partition (a sequence of decreasing nonnegative integers that sum up to n). We define a Young diagram of shape λ as the ordered sequences of boxes with λ_{1} boxes in the first row, λ_{2} in the second row, \ldots. For instance,

is a diagram of shape $(4,3,2)$. A Young tableau of shape $\lambda \vdash n$ is a filling of a diagram of shape λ with all the integers $1,2, \ldots, n$. For instance,

9	3	6	4
2	1	8	
5	7		

is a Young tableau for the partition $(4,3,2)$. The Specht polynomial $\mathrm{sp}_{T} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ associated with a tableau T is the product over all $x_{i}-x_{j}$ where $i \neq j$ are contained in the same column of the tableau T and i is written above j. For instance,

$$
\left(x_{9}-x_{2}\right)\left(x_{9}-x_{5}\right)\left(x_{2}-x_{5}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{7}\right)\left(x_{1}-x_{7}\right)\left(x_{6}-x_{8}\right) .
$$

A S_{n}-orbit type is of the form $\left(a_{1}, a_{1}, \ldots, a_{1}, a_{2}, \ldots, a_{2}, a_{3}, \ldots, a_{l}\right) \in \mathbb{R}^{n}$ for pairwise different coordinates $a_{i} \in \mathbb{R}$ and only unique up to permutation.

1. List all S_{n} orbit types in \mathbb{R}^{3}.
2. Determine all Young tableaux of shape $(2,1)$ and characterize the real variety

$$
V_{(2,1)}=\left\{z \in \mathbb{R}^{3}: \operatorname{sp}_{T}(z)=0, \text { for all tableaux } T \text { of shape }(2,1)\right\} .
$$

Can you characterize $V_{(2,1)}$ in terms of orbit types?
3. Characterize $V_{(1,1,1)}$ in terms of orbit types.
4. Can you formulate some possible relations between orbit types and varieties V_{λ} ?

Exercise 3

Recall that $S_{n}=\{\sigma:[n] \rightarrow[n] \mid \sigma$ is bijective $\}$ is the symmetric group with respect to the letters [n]. Consider the hyperoctahedral group $B_{n}=\{ \pm 1\}^{n} \ltimes S_{n}$. An element (τ, σ) with $\tau \in\{ \pm 1\}^{n}$ and $\sigma \in S_{n}$ acts on $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{n}$ via

$$
(\tau, \sigma) \cdot\left(z_{1}, \ldots, z_{n}\right)=\left(\tau_{\sigma(1)} z_{\sigma(1)}, \ldots, \tau_{\sigma(n)} z_{\sigma(n)}\right)
$$

1. Determine the points in \mathbb{R}^{n} that are fixed under all elements of B_{n}.
2. Try to define and encode an orbit type of an element $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{n}$ with respect to the hyperoctahedral group.

Properties of the sums of squares and moment hierarchies

Exercise 4

Consider the Motzkin polynomial $f(x, y)=1-3 x^{2} y^{2}+x^{2} y^{4}+x^{4} y^{2}$. Consider the unconstrained optimization problem, i.e. $\min f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{2}$ (we are then considering the quadratic module $M(1)=\Sigma^{2}$). Recall that $f^{*}=0$. Prove that $f_{\mathrm{sos}, r}^{*}=f_{\mathrm{mom}, r}^{*}=-\infty$ for all r.

Exercise 5

Show that there exists closed convex cones C_{1}, C_{2} whose Minkowski sum is not closesd.
Hint: Consider $C_{1}=\Sigma_{2,1}^{2}$ and $C_{2}=-\mathbb{R}_{\geq 0} x^{2}$, and then use a previous exercise

Exercise 6

Show that, given $f=x_{1} x_{2}, g_{1}=-x^{2}, g_{2}=1-x_{1}, g_{3}=1+x_{2}$, then $f^{*}=0, f_{\mathrm{SoS}, 1}^{*}=-\infty$, $f_{\mathrm{SoS}, 1}^{*}=0$. What about higher order of the hierarchies?

Exercise 7

Assume that $M(\mathbf{g})$ is Archimedean, say $1-x_{1}^{2}-\cdots-x_{n}^{2} \in M(\mathbf{g})$. Then prove that $T\left(1-x_{1}^{2}, \ldots, 1-x_{n}^{2}\right) \subset M(\mathbf{g})$.

